

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]


Promuex Inc. (Canada) Global Professional Certificate. 

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
Instruction plan : Certified GoLang Developer (CGD)
[bookmark: _GoBack]Course Overview
The Certified GoLang Developer (CGD) course is designed to provide students with a comprehensive understanding of Go (Golang), a powerful programming language known for its simplicity, concurrency support, and efficiency. This course covers Go syntax, data structures, concurrency, web development, and integrating with databases. By the end of the course, students will be able to develop scalable, high-performance applications in Go for both web and backend development.

Course Objectives
By the end of this course, students will be able to:
1. Master Go syntax, data structures, and core language features.
2. Implement concurrency in Go using goroutines and channels.
3. Build RESTful APIs and web applications with Go.
4. Integrate Go applications with SQL and NoSQL databases.
5. Manage error handling, testing, and debugging in Go.
6. Optimize Go applications for performance and efficiency.
7. Deploy Go applications using containers and CI/CD practices.

Module Breakdown with STAR Examples
Module 1: Introduction to Go and Setup
· Objective: Understand the basics of Go programming, including setup and syntax.
· Topics:
· Setting Up Go and the Go Workspace
· Basic Syntax: Variables, Data Types, Constants
· Functions, Packages, and Imports
· Learning Activity: Write a basic Go program that prints a greeting message.
· Assignment: Build a simple Go program that takes user input and performs basic arithmetic operations.
STAR Example:
· Situation: A company needs a utility program to perform simple calculations for users.
· Task: Create a Go program that performs addition, subtraction, multiplication, and division.
· Action: Set up Go workspace, write functions for each operation, and take input from the user.
· Result: Delivered a reliable and efficient calculator program, providing a utility for employees to perform calculations quickly.

Module 2: Data Structures and Control Flow in Go
· Objective: Learn Go’s data structures and control flow to build efficient applications.
· Topics:
· Arrays, Slices, and Maps
· Control Structures (Loops, Conditionals)
· Structs and Methods
· Learning Activity: Write a program that manages a list of products using slices and maps.
· Assignment: Create an inventory management program to add, update, and delete products using Go’s data structures.
STAR Example:
· Situation: A retail business needs a way to manage product information in a lightweight application.
· Task: Develop an inventory management tool that tracks products and quantities.
· Action: Use slices and maps to store product data and implement functions to manage the inventory.
· Result: Provided a simple, efficient solution for inventory tracking, improving the business’s resource management.

Module 3: Concurrency in Go with Goroutines and Channels
· Objective: Use Go’s concurrency model to build applications that handle multiple tasks efficiently.
· Topics:
· Introduction to Goroutines
· Synchronization with Channels
· Using Select Statements for Communication
· Learning Activity: Implement a basic web crawler using goroutines for concurrent URL fetching.
· Assignment: Create a concurrent program that processes multiple tasks (e.g., file processing) using goroutines and channels.
STAR Example:
· Situation: A data processing team needs to handle large files concurrently to reduce processing time.
· Task: Develop a program to process files in parallel, ensuring efficient resource use.
· Action: Use goroutines to handle each file in parallel and channels to manage the communication between tasks.
· Result: Significantly reduced processing time, enhancing productivity and allowing the team to handle larger datasets.

Module 4: Error Handling and Testing in Go
· Objective: Master error handling and testing practices for reliable Go applications.
· Topics:
· Error Handling Techniques (errors and fmt packages)
· Writing Tests in Go with the testing Package
· Benchmarks and Profiling
· Learning Activity: Write a Go function that checks user input, handles errors, and writes unit tests.
· Assignment: Develop a Go application that includes input validation, error handling, and unit tests.
STAR Example:
· Situation: A financial application requires validation of user input for transaction amounts.
· Task: Implement error handling to catch invalid inputs and test the functionality.
· Action: Write validation functions, handle errors for invalid entries, and use the testing package to create unit tests.
· Result: Ensured application reliability by validating input and catching potential errors early, reducing support tickets.

Module 5: Building RESTful APIs with Go
· Objective: Develop RESTful APIs using Go’s built-in packages and the net/http package.
· Topics:
· HTTP Handlers and Routing
· JSON Encoding/Decoding
· Structuring API Responses and Middleware
· Learning Activity: Create a basic REST API with endpoints for a to-do list application.
· Assignment: Build a REST API for a user management system with CRUD functionality.
STAR Example:
· Situation: A SaaS startup needs a user management API for its application.
· Task: Develop a RESTful API that handles user registration, updates, and deletions.
· Action: Use Go’s net/http package to create endpoints and JSON encoding for response handling.
· Result: Delivered a lightweight, scalable API, enabling efficient user management and easy integration with the front end.

Module 6: Working with Databases (SQL and NoSQL)
· Objective: Connect Go applications to SQL and NoSQL databases for data persistence.
· Topics:
· SQL Database Integration (MySQL, PostgreSQL)
· NoSQL Database Integration (MongoDB)
· CRUD Operations and Prepared Statements
· Learning Activity: Set up a Go application to connect to a MySQL database and perform CRUD operations.
· Assignment: Build an employee management system with database integration, allowing user data storage and retrieval.
STAR Example:
· Situation: A company needs an employee management tool with persistent data storage.
· Task: Implement a system to store, retrieve, and update employee data in a database.
· Action: Connect Go to MySQL, implement CRUD functionality, and ensure data integrity.
· Result: Delivered a reliable data management system, improving record accuracy and reducing data retrieval times.

Module 7: Web Development with Go Templates and Middleware
· Objective: Build server-rendered web applications in Go using HTML templates and middleware.
· Topics:
· HTML Templates in Go
· Middleware for Logging, Authentication, and Authorization
· Serving Static Files and Templates
· Learning Activity: Develop a Go web application that serves HTML templates with basic routing.
· Assignment: Create a blog platform where users can view, create, and delete posts, using templates for UI rendering.
STAR Example:
· Situation: A personal blog needs a backend for creating and serving posts dynamically.
· Task: Build a simple blog platform with user authentication and dynamic content.
· Action: Use Go’s HTML templates to render posts, set up middleware for logging, and implement basic authentication.
· Result: Successfully delivered a responsive blog platform, allowing content management and secure access.

Module 8: Performance Optimization and Debugging in Go
· Objective: Optimize Go applications for performance and use debugging tools to improve code quality.
· Topics:
· Profiling and Analyzing Go Programs (pprof)
· Memory Management and Garbage Collection
· Optimizing Goroutines and Channel Usage
· Learning Activity: Use the pprof tool to identify performance bottlenecks in a sample Go application.
· Assignment: Profile and optimize an API application to handle a higher number of concurrent requests.
STAR Example:
· Situation: A payment processing API experiences slow response times during peak traffic.
· Task: Optimize the API to improve response time and handle more requests concurrently.
· Action: Use pprof for profiling, optimize database connections, and reduce memory usage.
· Result: Improved response time by 30% and increased throughput, allowing the API to handle more requests reliably.

Module 9: Deployment and CI/CD for Go Applications
· Objective: Deploy Go applications using Docker, CI/CD pipelines, and cloud platforms.
· Topics:
· Dockerizing Go Applications
· Setting Up CI/CD Pipelines (GitHub Actions, Jenkins)
· Deploying to Cloud Platforms (AWS, Google Cloud, Azure)
· Learning Activity: Dockerize a Go application and deploy it to a local server.
· Assignment: Set up a CI/CD pipeline that builds, tests, and deploys a Go application to a cloud provider.
STAR Example:
· Situation: A fintech startup wants to streamline the deployment of its Go-based services.
· Task: Implement a CI/CD pipeline for automated testing and deployment.
· Action: Use Docker to containerize the application, set up GitHub Actions for CI/CD, and deploy to AWS.
· Result: Reduced deployment time and achieved continuous deployment, improving agility and ensuring quick updates.

Conclusion
The Certified GoLang Developer (CGD) course provides extensive training in Go programming, equipping students to develop scalable, high-performance applications. By learning Go’s unique concurrency model, REST API development, and deployment practices, students gain the skills necessary to tackle backend development challenges effectively. With STAR examples and hands-on assignments, this course offers a real-world application of Go in professional projects.

Promuex Inc. Canada (https://promuex.ca/)

image1.png




image2.png




